$ python list_field.py v2_papers/ analysis_method.algorithms.name
K-means;8
Naive Bayes;7
naive_bayes;4
Support Vector Machine;4
Random Forest;4
Nearest Neighbor;4
Decision Tree;4
decision_tree;3
SVM;3
K-Means;2
fuzzy clustering;2
Fuzziness based divide-and-conquer;2
Gaussian Mixture Models;2
C4.5;2
k-means;2
Autoencoder;2
Wavelet Analysis;2
mad-based outlier removal;2
support vector machine;2
k nearest neighbors;2
Entropy-based Traffic Anomaly Detection;1
clustering by hand in plotted graphs;1
SNORT;1
Ambiguity detection;1
Traffic Activity Graph;1
Naïve Bayes;1
Random forest;1
Softmax Regression Classifier;1
RIPPER;1
neural_network;1
ARMA;1
a-plane clustering;1
suricata;1
Autoregressive model;1
graph matching;1
clustering consensus;1
Logistic Regression;1
mlp;1
Decision tree;1
multi-class support vector machine;1
Neural Nets;1
Latent Semantic Analysis;1
Statistical Fingerprinting;1
hierarchical agglomerative;1
multiway subspace method;1
svm;1
viterbi;1
hidden markov model;1
two step clustering;1
AdaBoost;1
Hidden Markov Model;1
Principal Component Analysis;1
Holt-Winters Forecasting;1
Entropy;1
k-Nearest-Neighbors;1
Growing Hierarchical Self-Organizing Map;1
Ensemble;1
Bayesian Network;1
Bayes Net;1
Naı̈ve Bayes with kernel density estimation;1
Minimum Spanning Tree Clustering;1
k-medoids;1
pcStream2;1
Adaboost with Decision Stumps;1
Restricted Boltzmann Machine;1
HMM;1
Classification validation;1
Maximum entropy;1
Naı̈ve Bayes with kernel density estimation and FCBF prefiltering;1
neural network;1
vector quantization;1
bayes_network;1
Expectation Maximization;1
CS4.5;1
cross-plane correlation;1
ARIMA;1
Isolation Forests;1
Threshold based rule;1
KNN;1
neurofuzzy;1
Statistical Analysis;1
Naïve Bayes with FCBF prefiltering;1